if (!require('pacman', character.only = T)){
install.packages('pacman')
}library('pacman')
Getting Started
Overview
Spatial Point Pattern Analysis is the evaluation of the pattern or distribution, of a set of points on a surface. The point can be location of:
events such as crime, traffic accident and disease onset, or
business services (coffee and fastfood outlets) or facilities such as childcare and eldercare.
Using appropriate functions of spatstat, this hands-on exercise aims to discover the spatial point processes of childecare centres in Singapore.
The specific questions we would like to answer are as follows:
are the childcare centres in Singapore randomly distributed throughout the country?
if the answer is not, then the next logical question is where are the locations with higher concentration of childcare centres?
Installing and Loading Packages
Firstly, the code below will check if pacman has been installed. If it has not been installed, R will download and install it, before activating it for use during this session.
Next, pacman assists us by helping us load R packages that we require, sf
, tmap
and maptools
, spatstat
, raster
.
::p_load(sf, tmap, maptools, spatstat, raster) pacman
The following packages assists us to accomplish the following:
sf helps to import, manage and process vector-based geospatial data in R
tmap provides functions to allow us to plot high quality static or interactive maps using leaflet API
maptoolsI provides us a set of tools for manipulating geographic data
spatstat has a wide range of functions for point pattern analysis
raster reads, writes, manipulates, analyses and model of gridded spatial data (raster)
Data Acquisition
The following public datasets are used:
Dataset Name | Source |
---|---|
Master Plan 2014 Subzone Boundary (Web) (MP14_SUBZONE_WEB_PL.shp) | data.gov.sg |
Pre-Schools Location (preschools-location.geojson) | data.gov.sg |
Coastal Outline (CostalOutline.shp) | Prof Kam - SLA |
Spatial Data Wrangling
Importing Spatial Data
We will use st_read() of sf package to import the three geospatial datasets.
<- st_read(dsn = "Hands-on_Ex03/data/geospatial/child-care-services-geojson.geojson") childcare_sf
Reading layer `child-care-services-geojson' from data source
`C:\renjie-teo\IS415-GAA\exercises\Hands-on_Ex03\data\geospatial\child-care-services-geojson.geojson'
using driver `GeoJSON'
Simple feature collection with 1545 features and 2 fields
Geometry type: POINT
Dimension: XYZ
Bounding box: xmin: 103.6824 ymin: 1.248403 xmax: 103.9897 ymax: 1.462134
z_range: zmin: 0 zmax: 0
Geodetic CRS: WGS 84
<- st_read(dsn = "Hands-on_Ex03/data/geospatial", layer = "CostalOutline") sg_sf
Reading layer `CostalOutline' from data source
`C:\renjie-teo\IS415-GAA\exercises\Hands-on_Ex03\data\geospatial'
using driver `ESRI Shapefile'
Simple feature collection with 60 features and 4 fields
Geometry type: POLYGON
Dimension: XY
Bounding box: xmin: 2663.926 ymin: 16357.98 xmax: 56047.79 ymax: 50244.03
Projected CRS: SVY21
<- st_read(dsn = "Hands-on_Ex03/data/geospatial", layer = "MP14_SUBZONE_WEB_PL") mpsz_sf
Reading layer `MP14_SUBZONE_WEB_PL' from data source
`C:\renjie-teo\IS415-GAA\exercises\Hands-on_Ex03\data\geospatial'
using driver `ESRI Shapefile'
Simple feature collection with 323 features and 15 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 2667.538 ymin: 15748.72 xmax: 56396.44 ymax: 50256.33
Projected CRS: SVY21
Inspect and Reproject Coordinate System
Childcare Dataset
First, we inspect the crs of the sf dataframe.
st_crs(childcare_sf)
Coordinate Reference System:
User input: WGS 84
wkt:
GEOGCRS["WGS 84",
DATUM["World Geodetic System 1984",
ELLIPSOID["WGS 84",6378137,298.257223563,
LENGTHUNIT["metre",1]]],
PRIMEM["Greenwich",0,
ANGLEUNIT["degree",0.0174532925199433]],
CS[ellipsoidal,2],
AXIS["geodetic latitude (Lat)",north,
ORDER[1],
ANGLEUNIT["degree",0.0174532925199433]],
AXIS["geodetic longitude (Lon)",east,
ORDER[2],
ANGLEUNIT["degree",0.0174532925199433]],
ID["EPSG",4326]]
The ID provided is EPSG:4326
which matches the intended WGS84 Coordinate reference. We will now convert the CRS from WGS84 Geographic Coordinate System to SVY21 Projected Coordinate System for further analysis.
<- st_transform(childcare_sf , crs = 3414) childcare_sf
Coastal Outline Dataset
First, we inspect the crs of the sf dataframe.
st_crs(sg_sf)
Coordinate Reference System:
User input: SVY21
wkt:
PROJCRS["SVY21",
BASEGEOGCRS["SVY21[WGS84]",
DATUM["World Geodetic System 1984",
ELLIPSOID["WGS 84",6378137,298.257223563,
LENGTHUNIT["metre",1]],
ID["EPSG",6326]],
PRIMEM["Greenwich",0,
ANGLEUNIT["Degree",0.0174532925199433]]],
CONVERSION["unnamed",
METHOD["Transverse Mercator",
ID["EPSG",9807]],
PARAMETER["Latitude of natural origin",1.36666666666667,
ANGLEUNIT["Degree",0.0174532925199433],
ID["EPSG",8801]],
PARAMETER["Longitude of natural origin",103.833333333333,
ANGLEUNIT["Degree",0.0174532925199433],
ID["EPSG",8802]],
PARAMETER["Scale factor at natural origin",1,
SCALEUNIT["unity",1],
ID["EPSG",8805]],
PARAMETER["False easting",28001.642,
LENGTHUNIT["metre",1],
ID["EPSG",8806]],
PARAMETER["False northing",38744.572,
LENGTHUNIT["metre",1],
ID["EPSG",8807]]],
CS[Cartesian,2],
AXIS["(E)",east,
ORDER[1],
LENGTHUNIT["metre",1,
ID["EPSG",9001]]],
AXIS["(N)",north,
ORDER[2],
LENGTHUNIT["metre",1,
ID["EPSG",9001]]]]
The ID provided is EPSG:9001
which does not match the intended Projected CRS input of SVY21. Now, we correct the CRS ID using the code below.
<- st_set_crs(sg_sf,3414) sg_sf
Now, let us check if the CRS ID has been set correctly:
st_crs(sg_sf)
Coordinate Reference System:
User input: EPSG:3414
wkt:
PROJCRS["SVY21 / Singapore TM",
BASEGEOGCRS["SVY21",
DATUM["SVY21",
ELLIPSOID["WGS 84",6378137,298.257223563,
LENGTHUNIT["metre",1]]],
PRIMEM["Greenwich",0,
ANGLEUNIT["degree",0.0174532925199433]],
ID["EPSG",4757]],
CONVERSION["Singapore Transverse Mercator",
METHOD["Transverse Mercator",
ID["EPSG",9807]],
PARAMETER["Latitude of natural origin",1.36666666666667,
ANGLEUNIT["degree",0.0174532925199433],
ID["EPSG",8801]],
PARAMETER["Longitude of natural origin",103.833333333333,
ANGLEUNIT["degree",0.0174532925199433],
ID["EPSG",8802]],
PARAMETER["Scale factor at natural origin",1,
SCALEUNIT["unity",1],
ID["EPSG",8805]],
PARAMETER["False easting",28001.642,
LENGTHUNIT["metre",1],
ID["EPSG",8806]],
PARAMETER["False northing",38744.572,
LENGTHUNIT["metre",1],
ID["EPSG",8807]]],
CS[Cartesian,2],
AXIS["northing (N)",north,
ORDER[1],
LENGTHUNIT["metre",1]],
AXIS["easting (E)",east,
ORDER[2],
LENGTHUNIT["metre",1]],
USAGE[
SCOPE["Cadastre, engineering survey, topographic mapping."],
AREA["Singapore - onshore and offshore."],
BBOX[1.13,103.59,1.47,104.07]],
ID["EPSG",3414]]
Master Plan Subzone Dataset
First, we inspect the crs of the sf dataframe.
st_crs(mpsz_sf)
Coordinate Reference System:
User input: SVY21
wkt:
PROJCRS["SVY21",
BASEGEOGCRS["SVY21[WGS84]",
DATUM["World Geodetic System 1984",
ELLIPSOID["WGS 84",6378137,298.257223563,
LENGTHUNIT["metre",1]],
ID["EPSG",6326]],
PRIMEM["Greenwich",0,
ANGLEUNIT["Degree",0.0174532925199433]]],
CONVERSION["unnamed",
METHOD["Transverse Mercator",
ID["EPSG",9807]],
PARAMETER["Latitude of natural origin",1.36666666666667,
ANGLEUNIT["Degree",0.0174532925199433],
ID["EPSG",8801]],
PARAMETER["Longitude of natural origin",103.833333333333,
ANGLEUNIT["Degree",0.0174532925199433],
ID["EPSG",8802]],
PARAMETER["Scale factor at natural origin",1,
SCALEUNIT["unity",1],
ID["EPSG",8805]],
PARAMETER["False easting",28001.642,
LENGTHUNIT["metre",1],
ID["EPSG",8806]],
PARAMETER["False northing",38744.572,
LENGTHUNIT["metre",1],
ID["EPSG",8807]]],
CS[Cartesian,2],
AXIS["(E)",east,
ORDER[1],
LENGTHUNIT["metre",1,
ID["EPSG",9001]]],
AXIS["(N)",north,
ORDER[2],
LENGTHUNIT["metre",1,
ID["EPSG",9001]]]]
The ID provided is EPSG:9001
which does not match the intended Projected CRS input of SVY21. Now, we correct the CRS ID using the code below.
<- st_set_crs(mpsz_sf,3414) mpsz_sf
Now, let us check if the CRS ID has been set correctly:
st_crs(mpsz_sf)
Coordinate Reference System:
User input: EPSG:3414
wkt:
PROJCRS["SVY21 / Singapore TM",
BASEGEOGCRS["SVY21",
DATUM["SVY21",
ELLIPSOID["WGS 84",6378137,298.257223563,
LENGTHUNIT["metre",1]]],
PRIMEM["Greenwich",0,
ANGLEUNIT["degree",0.0174532925199433]],
ID["EPSG",4757]],
CONVERSION["Singapore Transverse Mercator",
METHOD["Transverse Mercator",
ID["EPSG",9807]],
PARAMETER["Latitude of natural origin",1.36666666666667,
ANGLEUNIT["degree",0.0174532925199433],
ID["EPSG",8801]],
PARAMETER["Longitude of natural origin",103.833333333333,
ANGLEUNIT["degree",0.0174532925199433],
ID["EPSG",8802]],
PARAMETER["Scale factor at natural origin",1,
SCALEUNIT["unity",1],
ID["EPSG",8805]],
PARAMETER["False easting",28001.642,
LENGTHUNIT["metre",1],
ID["EPSG",8806]],
PARAMETER["False northing",38744.572,
LENGTHUNIT["metre",1],
ID["EPSG",8807]]],
CS[Cartesian,2],
AXIS["northing (N)",north,
ORDER[1],
LENGTHUNIT["metre",1]],
AXIS["easting (E)",east,
ORDER[2],
LENGTHUNIT["metre",1]],
USAGE[
SCOPE["Cadastre, engineering survey, topographic mapping."],
AREA["Singapore - onshore and offshore."],
BBOX[1.13,103.59,1.47,104.07]],
ID["EPSG",3414]]
Mapping the Geospatial Datasets
After checking the CRS of each geospatial data frame, we can plot a map to see their spatial patterns.
Static Map
First, we will create a static map to get a general feel of the dataset.
childcare_sf
Simple feature collection with 1545 features and 2 fields
Geometry type: POINT
Dimension: XYZ
Bounding box: xmin: 11203.01 ymin: 25667.6 xmax: 45404.24 ymax: 49300.88
z_range: zmin: 0 zmax: 0
Projected CRS: SVY21 / Singapore TM
First 10 features:
Name
1 kml_1
2 kml_2
3 kml_3
4 kml_4
5 kml_5
6 kml_6
7 kml_7
8 kml_8
9 kml_9
10 kml_10
Description
1 <center><table><tr><th colspan='2' align='center'><em>Attributes</em></th></tr><tr bgcolor="#E3E3F3"> <th>ADDRESSBLOCKHOUSENUMBER</th> <td></td> </tr><tr bgcolor=""> <th>ADDRESSBUILDINGNAME</th> <td></td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSPOSTALCODE</th> <td>760742</td> </tr><tr bgcolor=""> <th>ADDRESSSTREETNAME</th> <td>742, YISHUN AVENUE 5, #01 - 470, SINGAPORE 760742</td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSTYPE</th> <td></td> </tr><tr bgcolor=""> <th>DESCRIPTION</th> <td>Child Care Services</td> </tr><tr bgcolor="#E3E3F3"> <th>HYPERLINK</th> <td></td> </tr><tr bgcolor=""> <th>LANDXADDRESSPOINT</th> <td>0</td> </tr><tr bgcolor="#E3E3F3"> <th>LANDYADDRESSPOINT</th> <td>0</td> </tr><tr bgcolor=""> <th>NAME</th> <td>AVERBEL CHILD DEVELOPMENT CENTRE PTE LTD</td> </tr><tr bgcolor="#E3E3F3"> <th>PHOTOURL</th> <td></td> </tr><tr bgcolor=""> <th>ADDRESSFLOORNUMBER</th> <td></td> </tr><tr bgcolor="#E3E3F3"> <th>INC_CRC</th> <td>AEA27114446235CE</td> </tr><tr bgcolor=""> <th>FMEL_UPD_D</th> <td>20200826094036</td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSUNITNUMBER</th> <td></td> </tr></table></center>
2 <center><table><tr><th colspan='2' align='center'><em>Attributes</em></th></tr><tr bgcolor="#E3E3F3"> <th>ADDRESSBLOCKHOUSENUMBER</th> <td></td> </tr><tr bgcolor=""> <th>ADDRESSBUILDINGNAME</th> <td></td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSPOSTALCODE</th> <td>159053</td> </tr><tr bgcolor=""> <th>ADDRESSSTREETNAME</th> <td>20, LENGKOK BAHRU, #02 - 05, SINGAPORE 159053</td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSTYPE</th> <td></td> </tr><tr bgcolor=""> <th>DESCRIPTION</th> <td>Child Care Services</td> </tr><tr bgcolor="#E3E3F3"> <th>HYPERLINK</th> <td></td> </tr><tr bgcolor=""> <th>LANDXADDRESSPOINT</th> <td>0</td> </tr><tr bgcolor="#E3E3F3"> <th>LANDYADDRESSPOINT</th> <td>0</td> </tr><tr bgcolor=""> <th>NAME</th> <td>AWWA LTD.</td> </tr><tr bgcolor="#E3E3F3"> <th>PHOTOURL</th> <td></td> </tr><tr bgcolor=""> <th>ADDRESSFLOORNUMBER</th> <td></td> </tr><tr bgcolor="#E3E3F3"> <th>INC_CRC</th> <td>86B24416FB1663C6</td> </tr><tr bgcolor=""> <th>FMEL_UPD_D</th> <td>20200826094036</td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSUNITNUMBER</th> <td></td> </tr></table></center>
3 <center><table><tr><th colspan='2' align='center'><em>Attributes</em></th></tr><tr bgcolor="#E3E3F3"> <th>ADDRESSBLOCKHOUSENUMBER</th> <td></td> </tr><tr bgcolor=""> <th>ADDRESSBUILDINGNAME</th> <td></td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSPOSTALCODE</th> <td>556912</td> </tr><tr bgcolor=""> <th>ADDRESSSTREETNAME</th> <td>22, LI HWAN VIEW, GOLDEN HILL ESTATE, SINGAPORE 556912</td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSTYPE</th> <td></td> </tr><tr bgcolor=""> <th>DESCRIPTION</th> <td>Child Care Services</td> </tr><tr bgcolor="#E3E3F3"> <th>HYPERLINK</th> <td></td> </tr><tr bgcolor=""> <th>LANDXADDRESSPOINT</th> <td>0</td> </tr><tr bgcolor="#E3E3F3"> <th>LANDYADDRESSPOINT</th> <td>0</td> </tr><tr bgcolor=""> <th>NAME</th> <td>BABIES BY-THE-PARK PTE. LTD.</td> </tr><tr bgcolor="#E3E3F3"> <th>PHOTOURL</th> <td></td> </tr><tr bgcolor=""> <th>ADDRESSFLOORNUMBER</th> <td></td> </tr><tr bgcolor="#E3E3F3"> <th>INC_CRC</th> <td>F971CBBA973E1AE5</td> </tr><tr bgcolor=""> <th>FMEL_UPD_D</th> <td>20200826094036</td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSUNITNUMBER</th> <td></td> </tr></table></center>
4 <center><table><tr><th colspan='2' align='center'><em>Attributes</em></th></tr><tr bgcolor="#E3E3F3"> <th>ADDRESSBLOCKHOUSENUMBER</th> <td></td> </tr><tr bgcolor=""> <th>ADDRESSBUILDINGNAME</th> <td></td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSPOSTALCODE</th> <td>569139</td> </tr><tr bgcolor=""> <th>ADDRESSSTREETNAME</th> <td>3, ANG MO KIO STREET 62, #01 - 36, LINK@AMK, SINGAPORE 569139</td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSTYPE</th> <td></td> </tr><tr bgcolor=""> <th>DESCRIPTION</th> <td>Child Care Services</td> </tr><tr bgcolor="#E3E3F3"> <th>HYPERLINK</th> <td></td> </tr><tr bgcolor=""> <th>LANDXADDRESSPOINT</th> <td>0</td> </tr><tr bgcolor="#E3E3F3"> <th>LANDYADDRESSPOINT</th> <td>0</td> </tr><tr bgcolor=""> <th>NAME</th> <td>Baby Elk Infant Care Pte Ltd</td> </tr><tr bgcolor="#E3E3F3"> <th>PHOTOURL</th> <td></td> </tr><tr bgcolor=""> <th>ADDRESSFLOORNUMBER</th> <td></td> </tr><tr bgcolor="#E3E3F3"> <th>INC_CRC</th> <td>86A4F25D1C7C9D85</td> </tr><tr bgcolor=""> <th>FMEL_UPD_D</th> <td>20200826094036</td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSUNITNUMBER</th> <td></td> </tr></table></center>
5 <center><table><tr><th colspan='2' align='center'><em>Attributes</em></th></tr><tr bgcolor="#E3E3F3"> <th>ADDRESSBLOCKHOUSENUMBER</th> <td></td> </tr><tr bgcolor=""> <th>ADDRESSBUILDINGNAME</th> <td></td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSPOSTALCODE</th> <td>467961</td> </tr><tr bgcolor=""> <th>ADDRESSSTREETNAME</th> <td>22A, KEW DRIVE, SINGAPORE 467961</td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSTYPE</th> <td></td> </tr><tr bgcolor=""> <th>DESCRIPTION</th> <td>Child Care Services</td> </tr><tr bgcolor="#E3E3F3"> <th>HYPERLINK</th> <td></td> </tr><tr bgcolor=""> <th>LANDXADDRESSPOINT</th> <td>0</td> </tr><tr bgcolor="#E3E3F3"> <th>LANDYADDRESSPOINT</th> <td>0</td> </tr><tr bgcolor=""> <th>NAME</th> <td>BABYPLANET MONTESSORI PTE. LTD.</td> </tr><tr bgcolor="#E3E3F3"> <th>PHOTOURL</th> <td></td> </tr><tr bgcolor=""> <th>ADDRESSFLOORNUMBER</th> <td></td> </tr><tr bgcolor="#E3E3F3"> <th>INC_CRC</th> <td>CFE3F056F8171C7B</td> </tr><tr bgcolor=""> <th>FMEL_UPD_D</th> <td>20200826094036</td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSUNITNUMBER</th> <td></td> </tr></table></center>
6 <center><table><tr><th colspan='2' align='center'><em>Attributes</em></th></tr><tr bgcolor="#E3E3F3"> <th>ADDRESSBLOCKHOUSENUMBER</th> <td></td> </tr><tr bgcolor=""> <th>ADDRESSBUILDINGNAME</th> <td></td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSPOSTALCODE</th> <td>598523</td> </tr><tr bgcolor=""> <th>ADDRESSSTREETNAME</th> <td>3 Jalan Kakatua, JURONG PARK, SINGAPORE 598523</td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSTYPE</th> <td></td> </tr><tr bgcolor=""> <th>DESCRIPTION</th> <td>Child Care Services</td> </tr><tr bgcolor="#E3E3F3"> <th>HYPERLINK</th> <td></td> </tr><tr bgcolor=""> <th>LANDXADDRESSPOINT</th> <td>0</td> </tr><tr bgcolor="#E3E3F3"> <th>LANDYADDRESSPOINT</th> <td>0</td> </tr><tr bgcolor=""> <th>NAME</th> <td>BAMBINI CHILDCARE LLP</td> </tr><tr bgcolor="#E3E3F3"> <th>PHOTOURL</th> <td></td> </tr><tr bgcolor=""> <th>ADDRESSFLOORNUMBER</th> <td></td> </tr><tr bgcolor="#E3E3F3"> <th>INC_CRC</th> <td>2B4F0B285ED28C4A</td> </tr><tr bgcolor=""> <th>FMEL_UPD_D</th> <td>20200826094036</td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSUNITNUMBER</th> <td></td> </tr></table></center>
7 <center><table><tr><th colspan='2' align='center'><em>Attributes</em></th></tr><tr bgcolor="#E3E3F3"> <th>ADDRESSBLOCKHOUSENUMBER</th> <td></td> </tr><tr bgcolor=""> <th>ADDRESSBUILDINGNAME</th> <td></td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSPOSTALCODE</th> <td>160131</td> </tr><tr bgcolor=""> <th>ADDRESSSTREETNAME</th> <td>131, JALAN BUKIT MERAH, #01 - 1591, SINGAPORE 160131</td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSTYPE</th> <td></td> </tr><tr bgcolor=""> <th>DESCRIPTION</th> <td>Child Care Services</td> </tr><tr bgcolor="#E3E3F3"> <th>HYPERLINK</th> <td></td> </tr><tr bgcolor=""> <th>LANDXADDRESSPOINT</th> <td>0</td> </tr><tr bgcolor="#E3E3F3"> <th>LANDYADDRESSPOINT</th> <td>0</td> </tr><tr bgcolor=""> <th>NAME</th> <td>BAMBINI MONTESSORI PTE. LTD.</td> </tr><tr bgcolor="#E3E3F3"> <th>PHOTOURL</th> <td></td> </tr><tr bgcolor=""> <th>ADDRESSFLOORNUMBER</th> <td></td> </tr><tr bgcolor="#E3E3F3"> <th>INC_CRC</th> <td>F62A225197813BBD</td> </tr><tr bgcolor=""> <th>FMEL_UPD_D</th> <td>20200826094036</td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSUNITNUMBER</th> <td></td> </tr></table></center>
8 <center><table><tr><th colspan='2' align='center'><em>Attributes</em></th></tr><tr bgcolor="#E3E3F3"> <th>ADDRESSBLOCKHOUSENUMBER</th> <td></td> </tr><tr bgcolor=""> <th>ADDRESSBUILDINGNAME</th> <td></td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSPOSTALCODE</th> <td>543319</td> </tr><tr bgcolor=""> <th>ADDRESSSTREETNAME</th> <td>319C, ANCHORVALE DRIVE, #01 - 66, SINGAPORE 543319</td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSTYPE</th> <td></td> </tr><tr bgcolor=""> <th>DESCRIPTION</th> <td>Child Care Services</td> </tr><tr bgcolor="#E3E3F3"> <th>HYPERLINK</th> <td></td> </tr><tr bgcolor=""> <th>LANDXADDRESSPOINT</th> <td>0</td> </tr><tr bgcolor="#E3E3F3"> <th>LANDYADDRESSPOINT</th> <td>0</td> </tr><tr bgcolor=""> <th>NAME</th> <td>BERRY TREE PRESCHOOL PRIVATE LIMITED</td> </tr><tr bgcolor="#E3E3F3"> <th>PHOTOURL</th> <td></td> </tr><tr bgcolor=""> <th>ADDRESSFLOORNUMBER</th> <td></td> </tr><tr bgcolor="#E3E3F3"> <th>INC_CRC</th> <td>AE242159867D5EB2</td> </tr><tr bgcolor=""> <th>FMEL_UPD_D</th> <td>20200826094036</td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSUNITNUMBER</th> <td></td> </tr></table></center>
9 <center><table><tr><th colspan='2' align='center'><em>Attributes</em></th></tr><tr bgcolor="#E3E3F3"> <th>ADDRESSBLOCKHOUSENUMBER</th> <td></td> </tr><tr bgcolor=""> <th>ADDRESSBUILDINGNAME</th> <td></td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSPOSTALCODE</th> <td>750511</td> </tr><tr bgcolor=""> <th>ADDRESSSTREETNAME</th> <td>511, CANBERRA ROAD, #03 - 02, SEMBAWANG MART, SINGAPORE 750511</td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSTYPE</th> <td></td> </tr><tr bgcolor=""> <th>DESCRIPTION</th> <td>Child Care Services</td> </tr><tr bgcolor="#E3E3F3"> <th>HYPERLINK</th> <td></td> </tr><tr bgcolor=""> <th>LANDXADDRESSPOINT</th> <td>0</td> </tr><tr bgcolor="#E3E3F3"> <th>LANDYADDRESSPOINT</th> <td>0</td> </tr><tr bgcolor=""> <th>NAME</th> <td>BERRY TREE PRESCHOOL@SEMBAWANG PRIVATE LIMITED</td> </tr><tr bgcolor="#E3E3F3"> <th>PHOTOURL</th> <td></td> </tr><tr bgcolor=""> <th>ADDRESSFLOORNUMBER</th> <td></td> </tr><tr bgcolor="#E3E3F3"> <th>INC_CRC</th> <td>C1456F97A17ED64A</td> </tr><tr bgcolor=""> <th>FMEL_UPD_D</th> <td>20200826094036</td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSUNITNUMBER</th> <td></td> </tr></table></center>
10 <center><table><tr><th colspan='2' align='center'><em>Attributes</em></th></tr><tr bgcolor="#E3E3F3"> <th>ADDRESSBLOCKHOUSENUMBER</th> <td></td> </tr><tr bgcolor=""> <th>ADDRESSBUILDINGNAME</th> <td></td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSPOSTALCODE</th> <td>823195</td> </tr><tr bgcolor=""> <th>ADDRESSSTREETNAME</th> <td>195C, PUNGGOL ROAD, #01 - 532, THE PERIWINKLE, SINGAPORE 823195</td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSTYPE</th> <td></td> </tr><tr bgcolor=""> <th>DESCRIPTION</th> <td>Child Care Services</td> </tr><tr bgcolor="#E3E3F3"> <th>HYPERLINK</th> <td></td> </tr><tr bgcolor=""> <th>LANDXADDRESSPOINT</th> <td>0</td> </tr><tr bgcolor="#E3E3F3"> <th>LANDYADDRESSPOINT</th> <td>0</td> </tr><tr bgcolor=""> <th>NAME</th> <td>BERRY TREE@PUNGGOL PTE LTD</td> </tr><tr bgcolor="#E3E3F3"> <th>PHOTOURL</th> <td></td> </tr><tr bgcolor=""> <th>ADDRESSFLOORNUMBER</th> <td></td> </tr><tr bgcolor="#E3E3F3"> <th>INC_CRC</th> <td>4F6A8FCA467C3437</td> </tr><tr bgcolor=""> <th>FMEL_UPD_D</th> <td>20200826094036</td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSUNITNUMBER</th> <td></td> </tr></table></center>
geometry
1 POINT Z (27976.73 45716.7 0)
2 POINT Z (25824 29900.09 0)
3 POINT Z (31399.04 37416.36 0)
4 POINT Z (29268.43 40942.1 0)
5 POINT Z (41217.74 33554.94 0)
6 POINT Z (20644.07 36118.78 0)
7 POINT Z (27427.95 29182.36 0)
8 POINT Z (34378.47 41423.03 0)
9 POINT Z (26467.04 48384.34 0)
10 POINT Z (36173.81 42550.33 0)
tm_shape(sg_sf)+
tm_polygons() +
tm_shape(mpsz_sf) +
tm_polygons() +
tm_shape(childcare_sf) +
tm_dots()
Here, we do not see any anomalies, all the geospatial points are within the map’s context, which means that the reference system and coordinate values are referred to the similar spatial context.
We can also prepare a pin map (interactive) by using the code below
tmap_mode('view') +
tm_shape(childcare_sf) +
tm_dots()
From the interactive map above, we can see that tmap is ustilising the leaflet for R API, which allows us to interact, navigate, zoom and query each simple feature. Changing the background of the map is also possible.
After setting the tmap_mode() to view
we need to remember to switch it back to plot
.
Geospatial Data Wrangling
Converting sf Dataframes to sp’s Spatial* Class
While simple feature data frame is gaining in popularity, many geospatial analysis packages still require the input geospatial data in sp’s Spatial* classes. We will convert the sf data frames to sp’s Spatial* Class below.
<- as_Spatial(childcare_sf)
childcare <- as_Spatial(mpsz_sf)
mpsz <- as_Spatial(sg_sf) sg
Now, let’s view the information of the Spatial* classes below:
childcare
class : SpatialPointsDataFrame
features : 1545
extent : 11203.01, 45404.24, 25667.6, 49300.88 (xmin, xmax, ymin, ymax)
crs : +proj=tmerc +lat_0=1.36666666666667 +lon_0=103.833333333333 +k=1 +x_0=28001.642 +y_0=38744.572 +ellps=WGS84 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs
variables : 2
names : Name, Description
min values : kml_1, <center><table><tr><th colspan='2' align='center'><em>Attributes</em></th></tr><tr bgcolor="#E3E3F3"> <th>ADDRESSBLOCKHOUSENUMBER</th> <td></td> </tr><tr bgcolor=""> <th>ADDRESSBUILDINGNAME</th> <td></td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSPOSTALCODE</th> <td>018989</td> </tr><tr bgcolor=""> <th>ADDRESSSTREETNAME</th> <td>1, MARINA BOULEVARD, #B1 - 01, ONE MARINA BOULEVARD, SINGAPORE 018989</td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSTYPE</th> <td></td> </tr><tr bgcolor=""> <th>DESCRIPTION</th> <td></td> </tr><tr bgcolor="#E3E3F3"> <th>HYPERLINK</th> <td></td> </tr><tr bgcolor=""> <th>LANDXADDRESSPOINT</th> <td>0</td> </tr><tr bgcolor="#E3E3F3"> <th>LANDYADDRESSPOINT</th> <td>0</td> </tr><tr bgcolor=""> <th>NAME</th> <td>THE LITTLE SKOOL-HOUSE INTERNATIONAL PTE. LTD.</td> </tr><tr bgcolor="#E3E3F3"> <th>PHOTOURL</th> <td></td> </tr><tr bgcolor=""> <th>ADDRESSFLOORNUMBER</th> <td></td> </tr><tr bgcolor="#E3E3F3"> <th>INC_CRC</th> <td>08F73931F4A691F4</td> </tr><tr bgcolor=""> <th>FMEL_UPD_D</th> <td>20200826094036</td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSUNITNUMBER</th> <td></td> </tr></table></center>
max values : kml_999, <center><table><tr><th colspan='2' align='center'><em>Attributes</em></th></tr><tr bgcolor="#E3E3F3"> <th>ADDRESSBLOCKHOUSENUMBER</th> <td></td> </tr><tr bgcolor=""> <th>ADDRESSBUILDINGNAME</th> <td></td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSPOSTALCODE</th> <td>829646</td> </tr><tr bgcolor=""> <th>ADDRESSSTREETNAME</th> <td>200, PONGGOL SEVENTEENTH AVENUE, SINGAPORE 829646</td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSTYPE</th> <td></td> </tr><tr bgcolor=""> <th>DESCRIPTION</th> <td>Child Care Services</td> </tr><tr bgcolor="#E3E3F3"> <th>HYPERLINK</th> <td></td> </tr><tr bgcolor=""> <th>LANDXADDRESSPOINT</th> <td>0</td> </tr><tr bgcolor="#E3E3F3"> <th>LANDYADDRESSPOINT</th> <td>0</td> </tr><tr bgcolor=""> <th>NAME</th> <td>RAFFLES KIDZ @ PUNGGOL PTE LTD</td> </tr><tr bgcolor="#E3E3F3"> <th>PHOTOURL</th> <td></td> </tr><tr bgcolor=""> <th>ADDRESSFLOORNUMBER</th> <td></td> </tr><tr bgcolor="#E3E3F3"> <th>INC_CRC</th> <td>379D017BF244B0FA</td> </tr><tr bgcolor=""> <th>FMEL_UPD_D</th> <td>20200826094036</td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSUNITNUMBER</th> <td></td> </tr></table></center>
mpsz
class : SpatialPolygonsDataFrame
features : 323
extent : 2667.538, 56396.44, 15748.72, 50256.33 (xmin, xmax, ymin, ymax)
crs : +proj=tmerc +lat_0=1.36666666666667 +lon_0=103.833333333333 +k=1 +x_0=28001.642 +y_0=38744.572 +ellps=WGS84 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs
variables : 15
names : OBJECTID, SUBZONE_NO, SUBZONE_N, SUBZONE_C, CA_IND, PLN_AREA_N, PLN_AREA_C, REGION_N, REGION_C, INC_CRC, FMEL_UPD_D, X_ADDR, Y_ADDR, SHAPE_Leng, SHAPE_Area
min values : 1, 1, ADMIRALTY, AMSZ01, N, ANG MO KIO, AM, CENTRAL REGION, CR, 00F5E30B5C9B7AD8, 16409, 5092.8949, 19579.069, 871.554887798, 39437.9352703
max values : 323, 17, YUNNAN, YSSZ09, Y, YISHUN, YS, WEST REGION, WR, FFCCF172717C2EAF, 16409, 50424.7923, 49552.7904, 68083.9364708, 69748298.792
sg
class : SpatialPolygonsDataFrame
features : 60
extent : 2663.926, 56047.79, 16357.98, 50244.03 (xmin, xmax, ymin, ymax)
crs : +proj=tmerc +lat_0=1.36666666666667 +lon_0=103.833333333333 +k=1 +x_0=28001.642 +y_0=38744.572 +ellps=WGS84 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs
variables : 4
names : GDO_GID, MSLINK, MAPID, COSTAL_NAM
min values : 1, 1, 0, ISLAND LINK
max values : 60, 67, 0, SINGAPORE - MAIN ISLAND
Now, they have been correctly converted into sp’s Spatial* classes.
Converting the Spatial* Class into Generic sp Format
spstat requires the analytical data to be in ppp object form. As there is no direct method to convert Spatial* classes to ppp object, we need to convert the Spatial* classes into an intermediate Spatial object first.
Thecode below converts Spatial* Classes into generic sp objects
<- as(childcare, "SpatialPoints")
childcare_sp <- as(sg, "SpatialPolygons") sg_sp
Next, we can check the sp object properties.
childcare_sp
class : SpatialPoints
features : 1545
extent : 11203.01, 45404.24, 25667.6, 49300.88 (xmin, xmax, ymin, ymax)
crs : +proj=tmerc +lat_0=1.36666666666667 +lon_0=103.833333333333 +k=1 +x_0=28001.642 +y_0=38744.572 +ellps=WGS84 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs
sg_sp
class : SpatialPolygons
features : 60
extent : 2663.926, 56047.79, 16357.98, 50244.03 (xmin, xmax, ymin, ymax)
crs : +proj=tmerc +lat_0=1.36666666666667 +lon_0=103.833333333333 +k=1 +x_0=28001.642 +y_0=38744.572 +ellps=WGS84 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs
Comparing the sp object and Spatial* Classes, the variables, names, min and max values are omitted from the sp object but present in Spatial* Classes.
Converting the Generic sp Format into spatstat’s ppp Format
Now, we will use as.ppp() function of spatstat to convert the spatial data into spatstat’s ppp object format.
<- as(childcare_sp, "ppp")
childcare_ppp childcare_ppp
Planar point pattern: 1545 points
window: rectangle = [11203.01, 45404.24] x [25667.6, 49300.88] units
Now, let us plot childcare_ppp and examine the difference
plot(childcare_ppp)
We can take a quick look at the summary statistics of the newly created ppp object by using the code below:
summary(childcare_ppp)
Planar point pattern: 1545 points
Average intensity 1.91145e-06 points per square unit
*Pattern contains duplicated points*
Coordinates are given to 3 decimal places
i.e. rounded to the nearest multiple of 0.001 units
Window: rectangle = [11203.01, 45404.24] x [25667.6, 49300.88] units
(34200 x 23630 units)
Window area = 808287000 square units
Note the warning message about duplicates. The statistical methodology used for spatial points pattern processes is based largely on the assumption that processes are simple, that means that the points cannot be coincident.
Handling duplicated points
We can check the duplication in a ppp object using the code below
any(duplicated(childcare_ppp))
[1] TRUE
To count the number of coincident points, we can use the multiplicity() function as shown in the code chunk below.
multiplicity(childcare_ppp)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 1 1 3 1 1 1 1 2 1 1 1 1 1 1 1
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
1 1 1 1 1 1 1 1 1 1 9 1 1 1 1 1
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
1 1 1 1 1 1 2 1 1 3 1 1 1 1 1 1
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
1 1 1 1 1 1 2 1 1 1 3 1 1 1 2 1
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
1 1 1 1 1 2 1 1 1 1 1 1 1 1 3 2
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
1 2 1 1 1 2 2 3 1 5 1 5 1 1 1 2
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
1 1 1 1 1 2 2 1 1 1 1 2 1 4 1 1
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 3
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
1 1 1 1 1 1 1 9 1 1 2 1 1 1 1 1
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
1 1 1 5 1 1 1 1 1 2 1 1 2 2 1 1
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
1 1 1 1 9 1 1 1 1 1 1 1 1 1 1 1
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
1 1 9 9 1 1 1 1 1 1 1 1 1 1 2 1
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
2 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
1 1 1 1 1 1 1 1 1 1 1 2 1 1 3 1
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
2 2 2 1 1 1 1 2 1 1 2 1 1 1 2 1
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
1 2 1 1 1 1 1 9 1 4 1 2 1 1 1 1
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
2 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
1 1 1 1 1 4 1 1 1 1 1 4 1 1 1 1
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
3 1 1 1 2 1 1 1 3 1 1 3 1 1 1 1
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
1 1 1 1 1 1 1 1 2 2 1 1 1 5 1 1
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
1 9 1 2 2 1 1 1 2 1 1 1 1 1 1 1
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
1 1 1 1 2 1 1 1 3 1 1 1 1 1 1 1
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
1 1 1 2 1 2 1 1 1 2 2 2 1 1 1 1
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
1 1 1 1 1 1 1 1 4 1 1 1 1 1 2 1
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
1 1 1 1 1 1 1 1 1 9 1 1 1 1 1 1
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
1 1 1 1 1 1 1 1 1 1 5 1 1 1 1 1
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 3
1537 1538 1539 1540 1541 1542 1543 1544 1545
1 1 1 1 1 1 2 1 1
If we want to know how many locations have more than one point event, we can use the code chunk below.
sum(multiplicity(childcare_ppp) > 1)
[1] 128
The output shows that there are 128
duplicated point events.
To view the locations of the duplicated point events, we can plot the childcare
dataset by using the code chunk below.
tmap_mode('view')
tm_shape(childcare) +
tm_dots(alpha = 0.4,
size = 0.05)
tmap_mode('plot')
From the interactive map above, you can see that the duplicated points have points that are darker in color, as the transparency of 1 point has been set to an alpha of 0.4, two overlapping points will make it more opaque.
There are a few ways to overcome this problem:
Delete the duplicates. However, some useful point events will be lost
jittering. Adds small perturrbations to duplicate points so that they do not occupy the same exact space
Make each point “unique” and then attach duplicates of points to the patterns as marks, as attributes of the points. Then we can use analytical techniques that take into account the marks.
We use the second approach, jittering to manipulate the points below
<- rjitter(childcare_ppp,
childcare_ppp_jit retry = TRUE,
nsim = 1,
drop = TRUE)
Now, let’s check the if there are still any duplicated points below
any(duplicated(childcare_ppp_jit))
[1] FALSE
Creating owin object
When analysing spatial point patterns, it is good practice to confine the analysis with a geographical area like Singapore boundary. In spatstat, an object called owin is specially designed to represent this polygonal region.
The code cunk below is used to convert the sg SpatialPolygon object into owin object of spatstat.
<- as(sg_sp, "owin") sg_owin
The output object can be displayed by using plot() function.
plot(sg_owin)
and summary() function of Base R.
summary(sg_owin)
Window: polygonal boundary
60 separate polygons (no holes)
vertices area relative.area
polygon 1 38 1.56140e+04 2.09e-05
polygon 2 735 4.69093e+06 6.27e-03
polygon 3 49 1.66986e+04 2.23e-05
polygon 4 76 3.12332e+05 4.17e-04
polygon 5 5141 6.36179e+08 8.50e-01
polygon 6 42 5.58317e+04 7.46e-05
polygon 7 67 1.31354e+06 1.75e-03
polygon 8 15 4.46420e+03 5.96e-06
polygon 9 14 5.46674e+03 7.30e-06
polygon 10 37 5.26194e+03 7.03e-06
polygon 11 53 3.44003e+04 4.59e-05
polygon 12 74 5.82234e+04 7.78e-05
polygon 13 69 5.63134e+04 7.52e-05
polygon 14 143 1.45139e+05 1.94e-04
polygon 15 165 3.38736e+05 4.52e-04
polygon 16 130 9.40465e+04 1.26e-04
polygon 17 19 1.80977e+03 2.42e-06
polygon 18 16 2.01046e+03 2.69e-06
polygon 19 93 4.30642e+05 5.75e-04
polygon 20 90 4.15092e+05 5.54e-04
polygon 21 721 1.92795e+06 2.57e-03
polygon 22 330 1.11896e+06 1.49e-03
polygon 23 115 9.28394e+05 1.24e-03
polygon 24 37 1.01705e+04 1.36e-05
polygon 25 25 1.66227e+04 2.22e-05
polygon 26 10 2.14507e+03 2.86e-06
polygon 27 190 2.02489e+05 2.70e-04
polygon 28 175 9.25904e+05 1.24e-03
polygon 29 1993 9.99217e+06 1.33e-02
polygon 30 38 2.42492e+04 3.24e-05
polygon 31 24 6.35239e+03 8.48e-06
polygon 32 53 6.35791e+05 8.49e-04
polygon 33 41 1.60161e+04 2.14e-05
polygon 34 22 2.54368e+03 3.40e-06
polygon 35 30 1.08382e+04 1.45e-05
polygon 36 327 2.16921e+06 2.90e-03
polygon 37 111 6.62927e+05 8.85e-04
polygon 38 90 1.15991e+05 1.55e-04
polygon 39 98 6.26829e+04 8.37e-05
polygon 40 415 3.25384e+06 4.35e-03
polygon 41 222 1.51142e+06 2.02e-03
polygon 42 107 6.33039e+05 8.45e-04
polygon 43 7 2.48299e+03 3.32e-06
polygon 44 17 3.28303e+04 4.38e-05
polygon 45 26 8.34758e+03 1.11e-05
polygon 46 177 4.67446e+05 6.24e-04
polygon 47 16 3.19460e+03 4.27e-06
polygon 48 15 4.87296e+03 6.51e-06
polygon 49 66 1.61841e+04 2.16e-05
polygon 50 149 5.63430e+06 7.53e-03
polygon 51 609 2.62570e+07 3.51e-02
polygon 52 8 7.82256e+03 1.04e-05
polygon 53 976 2.33447e+07 3.12e-02
polygon 54 55 8.25379e+04 1.10e-04
polygon 55 976 2.33447e+07 3.12e-02
polygon 56 61 3.33449e+05 4.45e-04
polygon 57 6 1.68410e+04 2.25e-05
polygon 58 4 9.45963e+03 1.26e-05
polygon 59 46 6.99702e+05 9.35e-04
polygon 60 13 7.00873e+04 9.36e-05
enclosing rectangle: [2663.93, 56047.79] x [16357.98, 50244.03] units
(53380 x 33890 units)
Window area = 748741000 square units
Fraction of frame area: 0.414
Combining Point Events Object and owin Object
In this last step of geospatial data wrangling, we will extract childcare events that are located within Singapore using the code below
= childcare_ppp[sg_owin] childcareSG_ppp
The output object combined both the point and polygon feature in one ppp object class as shown below.
summary(childcareSG_ppp)
Planar point pattern: 1545 points
Average intensity 2.063463e-06 points per square unit
*Pattern contains duplicated points*
Coordinates are given to 3 decimal places
i.e. rounded to the nearest multiple of 0.001 units
Window: polygonal boundary
60 separate polygons (no holes)
vertices area relative.area
polygon 1 38 1.56140e+04 2.09e-05
polygon 2 735 4.69093e+06 6.27e-03
polygon 3 49 1.66986e+04 2.23e-05
polygon 4 76 3.12332e+05 4.17e-04
polygon 5 5141 6.36179e+08 8.50e-01
polygon 6 42 5.58317e+04 7.46e-05
polygon 7 67 1.31354e+06 1.75e-03
polygon 8 15 4.46420e+03 5.96e-06
polygon 9 14 5.46674e+03 7.30e-06
polygon 10 37 5.26194e+03 7.03e-06
polygon 11 53 3.44003e+04 4.59e-05
polygon 12 74 5.82234e+04 7.78e-05
polygon 13 69 5.63134e+04 7.52e-05
polygon 14 143 1.45139e+05 1.94e-04
polygon 15 165 3.38736e+05 4.52e-04
polygon 16 130 9.40465e+04 1.26e-04
polygon 17 19 1.80977e+03 2.42e-06
polygon 18 16 2.01046e+03 2.69e-06
polygon 19 93 4.30642e+05 5.75e-04
polygon 20 90 4.15092e+05 5.54e-04
polygon 21 721 1.92795e+06 2.57e-03
polygon 22 330 1.11896e+06 1.49e-03
polygon 23 115 9.28394e+05 1.24e-03
polygon 24 37 1.01705e+04 1.36e-05
polygon 25 25 1.66227e+04 2.22e-05
polygon 26 10 2.14507e+03 2.86e-06
polygon 27 190 2.02489e+05 2.70e-04
polygon 28 175 9.25904e+05 1.24e-03
polygon 29 1993 9.99217e+06 1.33e-02
polygon 30 38 2.42492e+04 3.24e-05
polygon 31 24 6.35239e+03 8.48e-06
polygon 32 53 6.35791e+05 8.49e-04
polygon 33 41 1.60161e+04 2.14e-05
polygon 34 22 2.54368e+03 3.40e-06
polygon 35 30 1.08382e+04 1.45e-05
polygon 36 327 2.16921e+06 2.90e-03
polygon 37 111 6.62927e+05 8.85e-04
polygon 38 90 1.15991e+05 1.55e-04
polygon 39 98 6.26829e+04 8.37e-05
polygon 40 415 3.25384e+06 4.35e-03
polygon 41 222 1.51142e+06 2.02e-03
polygon 42 107 6.33039e+05 8.45e-04
polygon 43 7 2.48299e+03 3.32e-06
polygon 44 17 3.28303e+04 4.38e-05
polygon 45 26 8.34758e+03 1.11e-05
polygon 46 177 4.67446e+05 6.24e-04
polygon 47 16 3.19460e+03 4.27e-06
polygon 48 15 4.87296e+03 6.51e-06
polygon 49 66 1.61841e+04 2.16e-05
polygon 50 149 5.63430e+06 7.53e-03
polygon 51 609 2.62570e+07 3.51e-02
polygon 52 8 7.82256e+03 1.04e-05
polygon 53 976 2.33447e+07 3.12e-02
polygon 54 55 8.25379e+04 1.10e-04
polygon 55 976 2.33447e+07 3.12e-02
polygon 56 61 3.33449e+05 4.45e-04
polygon 57 6 1.68410e+04 2.25e-05
polygon 58 4 9.45963e+03 1.26e-05
polygon 59 46 6.99702e+05 9.35e-04
polygon 60 13 7.00873e+04 9.36e-05
enclosing rectangle: [2663.93, 56047.79] x [16357.98, 50244.03] units
(53380 x 33890 units)
Window area = 748741000 square units
Fraction of frame area: 0.414
plot(childcareSG_ppp)
First-order Spatial Point Patterns Analysis
Kernel Density Estimation
Computing Kernel Density Estimation using Automatic Bandwidth Selection Method
The code below computes a kernel density by using the following configurations of density() of spatstat:
bw.diggle() automatic bandwidth selection method. Other recommended methods include: bw.CvL(), bw.scott() or bw.ppl()
The smoothing kernel used by default is gaussian. Other smoothing methods include: epanechnikov, quartic or disc
The intensity estimate is corrected for edge effect bias by using the method described by Jones and Diggel, default is FALSE.
<- density(childcareSG_ppp,
kde_childcareSG_bw sigma = bw.diggle,
edge = TRUE,
kernel = "gaussian")
The plot() function is then used to display the kernel density derived.
plot(kde_childcareSG_bw)
The density values of the output range from 0 to 0.0000035 which is too small to comprehend as the default unit of measure of svy21
is in metres. As a result, the density values computed is in number of points per square meter.
We can check the bandwidth used to compute the kde layer using the code below.
<- bw.diggle(childcareSG_ppp)
bw bw
sigma
298.4095
Rescaling KDE Values
Using the rescale() function, we can convert the unit of measurement from metres to kilometres
<- rescale(childcareSG_ppp, 1000, "km") childcareSG_ppp.km
Now, we can re-run density() using the rescaled data set and plot the output kde map
<- density(childcareSG_ppp.km,
kde_childcareSG_bw sigma = bw.diggle,
edge = TRUE,
kernel = "gaussian")
plot(kde_childcareSG_bw)
The kde output image looks identical to the previous version, only the data values in the legend has changed.
Working with Different Automatic Bandwidth Methods
Besides bw.diggle(), there are three other spatstat functions that can be used to determine bandwidth. They are bw.CvL(), bw.scott(), and bw.ppl()
Let us look at the bandwidth returned by the different automatic bandwidth calculation methods below.
bw.CvL(childcareSG_ppp.km)
sigma
4.543278
bw.scott(childcareSG_ppp.km)
sigma.x sigma.y
2.224898 1.450966
bw.ppl(childcareSG_ppp.km)
sigma
0.3897114
bw.diggle(childcareSG_ppp.km)
sigma
0.2984095
Baddeley et al. suggested the use of bw.ppl() algorithm due to their experience of producing more appropraiate values when pattern consists predominantly of tight clusters. However, if the purpose of one’s study is to detect a single tight cluster in the midst of random noise, bw.diggle() method will be more appropriate.
The code below compares the output of using bw.diggle() and bw.ppl() methods
<- density(childcareSG_ppp.km,
kde_childcareSG.ppl sigma = bw.ppl,
edge = TRUE,
kernel = "gaussian")
par(mfrow = c(1,2))
plot(kde_childcareSG_bw, main = "bw.diggle")
plot(kde_childcareSG.ppl, main = "bw.ppl")
Working with Different Kernel Methods
By default, the kernel method used in density.ppp() is gaussian. However, there are epanechnikov, quartic and dics.
Here, we will use the code to compute three more KDE using the kernel functions
par(mfrow=c(2,2))
plot(density(childcareSG_ppp.km,
sigma = bw.ppl,
edge = TRUE,
kernel = "gaussian"),
main = "Gaussian")
plot(density(childcareSG_ppp.km,
sigma = bw.ppl,
edge = TRUE,
kernel = "epanechnikov"),
main = "Epanechnikov")
plot(density(childcareSG_ppp.km,
sigma = bw.ppl,
edge = TRUE,
kernel = "quartic"),
main = "Quartic")
plot(density(childcareSG_ppp.km,
sigma = bw.ppl,
edge = TRUE,
kernel = "disc"),
main = "Disc")
Fixed and Adaptive KDE
Computing KDE by using Fixed Bandwidth
Next, we can compute a KDE layer by defining a bandwidth of 600 metres. As the unit of measurement of childcareSG_ppp.km
object is in kilometres, we use a sigma value of 0.6.
<- density(childcareSG_ppp.km, sigma = 0.6, edge = TRUE, kernel = "gaussian")
kde_childcareSG_600 plot(kde_childcareSG_600)
Computing KDE by using Adaptive Bandwidth
The fixed bandwidth method is very sensitive to highly skewed distribution of spatial point patterns over geographical units (eg. urban vs rural). One way to overcome the problem is to use adaptive bandwidth.
We can use density.adaptive() to derive adaptive kernel density estimation
<- adaptive.density(childcareSG_ppp.km, method = "kernel")
kde_childcareSG_adaptive plot(kde_childcareSG_adaptive)
We can compare the fixed and adaptive KDE outputs using the code below
par(mfrow=c(1,2))
plot(kde_childcareSG_bw, main = "Fixed bandwidth")
plot(kde_childcareSG_adaptive, main = "Adaptive bandwidth")
Converting KDE Output into Grid Object
The results are the same, but the conversion allows us to use it for mapping purposes.
<- as.SpatialGridDataFrame.im(kde_childcareSG_bw)
gridded_kde_childcareSG_bw spplot(gridded_kde_childcareSG_bw)
Converting Gridded Output into Raster
Next, we will convert gridded kernel density objects into RasterLayer object using raster() of the raster object.
<- raster(gridded_kde_childcareSG_bw) kde_childcareSG_bw_raster
We can view the properties of kde_childcareSG_bw_raster RasterLayer
kde_childcareSG_bw_raster
class : RasterLayer
dimensions : 128, 128, 16384 (nrow, ncol, ncell)
resolution : 0.4170614, 0.2647348 (x, y)
extent : 2.663926, 56.04779, 16.35798, 50.24403 (xmin, xmax, ymin, ymax)
crs : NA
source : memory
names : v
values : -8.476185e-15, 28.51831 (min, max)
Note that the CRS property is NA.
Assigning Projection Systems
The code below will be used to include CRS information.
projection(kde_childcareSG_bw_raster) <- CRS("+init=EPSG:3414")
kde_childcareSG_bw_raster
class : RasterLayer
dimensions : 128, 128, 16384 (nrow, ncol, ncell)
resolution : 0.4170614, 0.2647348 (x, y)
extent : 2.663926, 56.04779, 16.35798, 50.24403 (xmin, xmax, ymin, ymax)
crs : +proj=tmerc +lat_0=1.36666666666667 +lon_0=103.833333333333 +k=1 +x_0=28001.642 +y_0=38744.572 +ellps=WGS84 +units=m +no_defs
source : memory
names : v
values : -8.476185e-15, 28.51831 (min, max)
Note that the CRS property has been included.
Visualising Output in tmap
We can finally display the raster using tmap
tm_shape(kde_childcareSG_bw_raster) +
tm_raster("v") +
tm_layout(legend.position = c("right", "bottom"), frame = FALSE)
Note that the raster values are encoded explicitly onto the raster pixel using the values in the “v” field.
Comparing Spatial Point Patterns Using KDE
Here, we will look at how to compare KDE of childcare at Punggol, Tampines, Chua Chu Kang and Jurong West Planning Areas
Extracting Study Areas
The code below will help us to extract the target planning areas
= mpsz[mpsz@data$PLN_AREA_N == "PUNGGOL",]
pg = mpsz[mpsz@data$PLN_AREA_N == "TAMPINES",]
tm = mpsz[mpsz@data$PLN_AREA_N == "CHOA CHU KANG",]
ck = mpsz[mpsz@data$PLN_AREA_N == "JURONG WEST",] jw
Plotting target planning areas
par(mfrow=c(2,2))
plot(pg, main = "Punggol")
plot(tm, main = "Tampines")
plot(ck, main = "Choa Chu Kang")
plot(jw, main = "Jurong West")
Converting the Spatial Point Data Frame into Generic sp Format
= as(pg, "SpatialPolygons")
pg_sp = as(tm, "SpatialPolygons")
tm_sp = as(ck, "SpatialPolygons")
ck_sp = as(jw, "SpatialPolygons") jw_sp
Creating owin Object
= as(pg_sp, "owin")
pg_owin = as(tm_sp, "owin")
tm_owin = as(ck_sp, "owin")
ck_owin = as(jw_sp, "owin") jw_owin
Combining Childcare Points and the Study Area
By using the code chunk below, we are able to extract childcare that is within the specific region to do our analysis later on.
= childcare_ppp_jit[pg_owin]
childcare_pg_ppp = childcare_ppp_jit[tm_owin]
childcare_tm_ppp = childcare_ppp_jit[ck_owin]
childcare_ck_ppp = childcare_ppp_jit[jw_owin] childcare_jw_ppp
We use rescale() to transform the units of measurement from metre to kilometre
= rescale(childcare_pg_ppp, 1000, "km")
childcare_pg_ppp.km = rescale(childcare_tm_ppp, 1000, "km")
childcare_tm_ppp.km = rescale(childcare_ck_ppp, 1000, "km")
childcare_ck_ppp.km = rescale(childcare_jw_ppp, 1000, "km") childcare_jw_ppp.km
Now, we will plot the four study areas and locations of childcare centres
par(mfrow=c(2,2))
plot(childcare_pg_ppp.km, main="Punggol")
plot(childcare_tm_ppp.km, main="Tampines")
plot(childcare_ck_ppp.km, main="Choa Chu Kang")
plot(childcare_jw_ppp.km, main="Jurong West")
Computing KDE
The code chunk below will be used to compute the KDE of these four planning area. bw.diggle method is used to derive each bandwidth
par(mfrow=c(2,2))
plot(density(childcare_pg_ppp.km,
sigma = bw.diggle,
edge = TRUE,
kernel = "gaussian"),
main = "Punggol")
plot(density(childcare_tm_ppp.km,
sigma = bw.diggle,
edge = TRUE,
kernel = "gaussian"),
main = "Tampines")
plot(density(childcare_ck_ppp.km,
sigma = bw.diggle,
edge = TRUE,
kernel = "gaussian"),
main = "Choa Chu Kang")
plot(density(childcare_jw_ppp.km,
sigma = bw.diggle,
edge = TRUE,
kernel = "gaussian"),
main = "Jurong West")
Computing Fixed Bandwidth KDE
For comparison purposes, we will use 250m as the bandwidth.
par(mfrow=c(2,2))
plot(density(childcare_ck_ppp.km,
sigma = 0.25,
edge = TRUE,
kernel = "gaussian"),
main = "Chou Chu Kang")
plot(density(childcare_jw_ppp.km,
sigma = 0.25,
edge = TRUE,
kernel = "gaussian"),
main = "Jurong West")
plot(density(childcare_pg_ppp.km,
sigma = 0.25,
edge = TRUE,
kernel = "gaussian"),
main = "Punggol")
plot(density(childcare_tm_ppp.km,
sigma = 0.25,
edge = TRUE,
kernel = "gaussian"),
main = "Tampines")
Nearest Neighbour Analysis
In this section, we will perform the Clark-Evans test of aggregation for a spatial point pattern by using clarkevans.test() of statspat at 95% confidence interval.
The test hypotheses are:
Ho = The distribution of childcare services are randomly distributed.
H1 = The distribution of childcare services are not randomly distributed.
Testing Spatial Point Patterns using Clark and Evans Test
clarkevans.test(childcareSG_ppp,
correction="none",
clipregion="sg_owin",
alternative=c("clustered"),
nsim=99)
Clark-Evans test
No edge correction
Z-test
data: childcareSG_ppp
R = 0.54756, p-value < 2.2e-16
alternative hypothesis: clustered (R < 1)
As P is 0.01 < 0.05, we reject the null hypothesis that the childcare services are randomly distributed. We can infer from the R value (Nearest Neighbour Index) that since R = 0.54756 < 1, the pattern exhibits clustering in Tampines.
Clark and Evans Test: Choa Chu Kang Planning Area
clarkevans.test(childcare_ck_ppp,
correction="none",
clipregion=NULL,
alternative=c("two.sided"),
nsim=999)
Clark-Evans test
No edge correction
Z-test
data: childcare_ck_ppp
R = 0.95212, p-value = 0.4744
alternative hypothesis: two-sided
As P is 0.204 > 0.05, we cannot reject the null hypothesis that the childcare services are randomly distributed in Choa Chu Kang.
Clark and Evans Test: Tampines Planning Area
clarkevans.test(childcare_tm_ppp,
correction="none",
clipregion=NULL,
alternative=c("two.sided"),
nsim=999)
Clark-Evans test
No edge correction
Z-test
data: childcare_tm_ppp
R = 0.77084, p-value = 3.538e-05
alternative hypothesis: two-sided
As P is 0.002 < 0.05, we reject the null hypothesis that the childcare services are randomly distributed.
We can infer from the R value (Nearest Neighbour Index) that since R = 0.79654 < 1, the patten exhibits clustering in Tampines.